Substantive logics of fiction. Part III: E. N. Zalta’s theory of abstract objects (in Polish)

Main Article Content

Jacek Gurczyński

Abstract

This paper presents E. N. Zalta’s theory of abstract objects. It discusses the application of the theory of abstract objects to the analysis of fiction. From a formal point of view the system is an intensional second-order logic of relations based on the standard axiomatization of the propositional calculus. Zalta distinguishes exemplification and encoding of properties. Real objects exemplify properties, while abstract objects both encode and exemplify properties. This distinction makes it possible to apprehend the double structure of predication of fictional objects. It also points out some unwanted consequences of the theory, which are bound to the fact that fictional objects are conceived as abstract objects. Another defect of the system is its weak deductive power – the conclusions do not go beyond the system’s axiomatization.

Article Details

How to Cite
“Substantive Logics of Fiction. Part III: E. N. Zalta’s Theory of Abstract Objects (in Polish)”. 2013. Diametros, no. 35 (March): 21-48. https://doi.org/10.13153/diam.35.2013.507.
Section
Articles
Author Biography

Jacek Gurczyński, Maria Curie-Sklodowska University

Jacek Gurczyński, PhD
Maria Curie-Sklodowska University
Department of Philosophy
Plac Marii Curie Skłodowskiej 4
Pl-20-031 Lublin
e-mail: jgurczyn@gmail.com

How to Cite

“Substantive Logics of Fiction. Part III: E. N. Zalta’s Theory of Abstract Objects (in Polish)”. 2013. Diametros, no. 35 (March): 21-48. https://doi.org/10.13153/diam.35.2013.507.
Share |

References

Anderson [1993] – C.A. Anderson, Zalta's Intensional Logic, “Philosophical Studies” (69) 1993, s. 221-229.

Grygianiec [2005] – M. Grygianiec, Teoria obiektów abstrakcyjnych Edwarda N. Zalty. Analiza i krytyka, „Filozofia Nauki” (149) 2005, s. 25-40.

Linsky, Zalta [1994] – B. Linsky, E.N. Zalta, In Defense of the Simplest Quantified Modal Logic, “Philosophical Perspectives” (8) 1994, s. 438-453.

Menzel [1993] – C. Menzel, Possibilism and Object Theory, “Philosophical Studies” (69/2-3) 1993, s. 195-208.

Paśniczek [1993] – J. Paśniczek, The Simplest Meinongian Logic, “Logique & Analyse” (143-144) 1993, s. 329-342.

Paśniczek [1994] – J. Paśniczek, Theories of Objects?, “Grazer Philosophische Studien” (50) 1994, s. 293-303.

Paśniczek [1999] – J. Paśniczek, The Logic of Intentional Objects. A Meinongian Version of Classical Logic, Kluwer Academic Publishers, Dordrecht 1999.

Routley [1979] – R. Routley, The Semantical Structure of Fictional Discourse, “Poetics” (8) 1979, s. 3-30.

Zalta, McMichael [1980] – E.N. Zalta, A. McMichael, An Alternative Theory of Nonexistent Objects, “Journal of Philosophical Logic” (3) 1980, s. 297-313.

Zalta [1983] – E.N. Zalta, AbstractObjects, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster 1983.

Zalta [1987] – E.N. Zalta, Referring to Fictional Characters, “Zeitchrift für Semiotik” (9/1-2) 1987, s. 85-95.

Zalta [1988a] – E.N. Zalta, Intensional Logic and The Metaphysics of Intentionality, The MIT Press, Cambridge 1988.

Zalta [1988b] – E.N. Zalta, A Comparison of Two Intensional Logics, “Linguistics and Philosophy” (11) 1988, s. 59-89.

Zalta [1991] – E.N. Zalta, Is Lewis a Meinongian?, “Australasian Journal of Philosophy” (69/4) 1991, s. 438-453.

Zalta [1993a] – E.N. Zalta, Replies to the Critics, “Philosophical Studies” (69/2-3) 1993, s. 231-242.

Zalta [1993b] – E.N. Zalta, Twenty-Five Basic Theorems in Situation and World Theory, “Journal of Philosophical Logic” (22) 1993, s. 385-428.

Zalta [Principia] – E.N. Zalta, Principia Metaphysica, dostępne na: http://mally.stanford. edu/principia/principia.html [23.11.2010].