Making Diagnostic Strategies in Medical Practice with the Use of Bayes’ Theorem (in Polish)

Main Article Content

Tomasz Rzepiński

Abstract

The paper will compare two methods used in the design of diagnostic strategies. The first one is a method that precises predictive value of diagnostic tests. The second one is based on the use of Bayes’ theorem. The main aim of this article is to identify the epistemological assumptions underlying both of these  methods. For the purpose of this objective, example projects of one and multi-stage diagnostic strategy developed using both methods will be considered.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rzepiński, Tomasz. 2018. “Making Diagnostic Strategies in Medical Practice With the Use of Bayes’ Theorem (in Polish)”. Diametros, no. 57 (September), 39-60. https://doi.org/10.13153/diam.1235.
Section
Articles
Author Biography

Tomasz Rzepiński, Adam Mickiewicz University

Tomasz Rzepiński, dr hab.
Adam Mickiewicz University
Department of Philosophy
ul. Szamarzewskiego 89c
Pl-60-568 Poznań

E-mail: rzepinskit@wp.pl

Share |

References

Ajdukiewicz K. (1975), Logika pragmatyczna, PWN, Warszawa.
View in Google Scholar

Caraguel C.B.G., Vanderstichel R. (2013), The two step Fagan’s nomogram: ad hoc interpretation of a diagnostic test result without calculation, „Evidence Based Medicine” 18 (4): 125–128.
View in Google Scholar

Diamond G.A., Forrester J.S. (1979), Analysis of probability as an aid in the clinical diagnosis of coronary artery disease, „New England Journal of Medicine” 300 (24): 1350–1358.
View in Google Scholar

Dujardin B., van den Ende J., van Gompel A., Unger J.P., van der Stuyft P (1994), Likelihood ratios: a real improvement for clinical decision making, „European Journal of Epidemiology” 10 (1): 29–36.
View in Google Scholar

Enøe C., Georgiadis M.P., Johnson W.O. (2000), Estimation of sensitivity and specificity of diagnostic tests and disease prevalance when the true disease state is unknown, „Preventive Veterinary Medicine” 45 (1–2): 61–81.
View in Google Scholar

Fagan T.J. (1975), Nomogram for Bayes's theorem, „New England Journal of Medicine” 293 (5): 257.
View in Google Scholar

Fine T. (1973), Theories of Probability. An Examination of Foundation, Waltham.
View in Google Scholar

Gigerenzer G., Hoffrage U. (1995), How to Improve Bayesian Reasonig Without Instruction: Frequency Formats, „Psychological Review” 102 (4): 684–704.
View in Google Scholar

Gillies D. (2000), Philosophical Theories of Probability, Routledge, London.
View in Google Scholar

Goodman S.N. (1999), Toward Evidence-Based Medical Statistics. 1: The P-Value Fallacy, „Annals of Internal Medicine” 130 (12): 995–1004.
View in Google Scholar

Halkin A., Reichman J., Schwaber M., Paltiel O., Brezis M. (1998), Likelihood ratios: getting diagnostic testing into perspective, „QJM: An International Journal of Medicine” 91 (4): 247–258.
View in Google Scholar

Howson C., Urbach P. (2006), Scientific Reasoning. The Bayesian Approach, Open Court Publishing Company, Chicago, La Salle.
View in Google Scholar

Hui S.L., Zhou X.H. (1998), Evaluation of diagnostic tests without gold standards, „Statistical Methods in Medical Research” 7 (4): 354–370.
View in Google Scholar

Jaeschke R., Cook D.J., Guyatt G.H. (1998), Evidence based medicine (EBM), czyli praktyka medyczna oparta na wiarygodnych i aktualnych publikacjach (POWAP), „Medycyna Praktyczna” 10 (92): 156–159.
View in Google Scholar

Jędrychowski W. (1999), Epidemiologia. Wprowadzenie i metody badań, Wydawnictwo Lekarskie PZWL, Warszawa.
View in Google Scholar

Jędrychowski W. (2002), Podstawy epidemiologii, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.
View in Google Scholar

Joseph L., Gyorkos T.W., Coupal L. (1995), Bayesian estimation of disease prevalance and the parameters of diagnostic tests in the absence of gold standard, „American Journal of Epidemiology” 141 (3): 263–272.
View in Google Scholar

Moons K.G., van Es G.A., Deckers W., Habbema J.D., Grobbee D.E. (1997), Limitations of sensitivity, specificity, likelihood ratio, and bayes’ theorem in assesing diagnostic probabilities: a clinical example, „Epidemiology” 8 (1): 12–17.
View in Google Scholar

Naskalski J. (2005), Pojęcie normy, wartości referencyjnych i ich znaczenie dla formułowania diagnozy, [w:] Diagnostyka laboratoryjna z elementami biochemii klinicznej, A. Dembińska-Kieć, J. Naskalski (red.), Urban i Partner, Wrocław: 47–57.
View in Google Scholar

Paulo S., Mendes S., Vizinho R., Carneiro A.V. (2004), Diagnostic testing, pre- and post-test probabilities, and their use in clinical practice, „Revista Portuguesa de Cardiologia” 23 (9): 1187–1198.
View in Google Scholar

Rzepiński T. (2016), Konstruowanie typologii i klasyfikacji wielowymiarowych dla potrzeb diagnostyki medycznej, „Zagadnienia Naukoznawstwa” 2 (208): 199–218.
View in Google Scholar

Sak J. (2013), Wielowymiarowość postrzegania choroby w kontekście przekonań zdrowotnych i poczucia sensu życia, Perfecta Info, Lublin.
View in Google Scholar

Steurer J. (2009), Pre-test and post-test probabilities. Who cares?, „Therapeutische Umschau” 66 (1): 5–7.
View in Google Scholar

Winkler R.L., Smith J.E. (2004), On uncertainty in medical testing, „Medical Decision Making” 24 (6): 654–658
View in Google Scholar

Wulff H.R., Gøtzsche P.C. (2005), Racjonalna diagnoza i leczenie. Wprowadzenie do medycyny wiarygodnej czyli Evidence-Based Medicine, AKTIS, Łódź.
View in Google Scholar