The modal status of mathematical statements (in Polish)

Main Article Content

Daniel Chlastawa

Abstract

The paper contains an analysis of three counterexamples to the view that all mathematical statements are necessary, i.e. necessarily true or necessarily false: an argument from contingent, relational, empirical properties, an argument from properties based on conventional representations and an argument from model relativity. The first and the second argument can be rejected easily, while to answer the third argument one has to adopt a quite strong set-theoretic realism.

Article Details

How to Cite
“The Modal Status of Mathematical Statements (in Polish)”. 2011. Diametros, no. 30 (December): 2-12. https://doi.org/10.13153/diam.30.2011.452.
Section
Articles
Author Biography

Daniel Chlastawa, University of Warsaw

Daniel Chlastawa, MA
University of Warsaw
Department of Philosophy
ul. Krakowskie Przedmieście 3
Pl-00-927 Warszawa
e-mail: dchlastawa@gmail.com

How to Cite

“The Modal Status of Mathematical Statements (in Polish)”. 2011. Diametros, no. 30 (December): 2-12. https://doi.org/10.13153/diam.30.2011.452.
Share |

References

Mill [1962] – J.S. Mill, System logiki dedukcyjnej i indukcyjnej, t. I, tłum. Cz. Znamierowski, Państwowe Wydawnictwo Naukowe, Warszawa 1962.

Murawski [2001] – R. Murawski, Filozofia matematyki. Zarys dziejów, Wydawnictwo Naukowe PWN, Warszawa 2001.

Resnik [1997] – M. Resnik, Mathematics as a Science of Patterns, Clarendon Press, Oxford 1997.